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Temperature and velocity field regimes of 
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The paper is a continuation of work published in Boubnov & Golitsyn (1986). We 
present new measurements of the temperature and velocity field patterns and their 
statistical characteristics. This allows us to classify regimes of convection in a plane 
rotating horizontal fluid layer in terms of Rayleigh and Taylor numbers. Within the 
irregular regimes geostrophic convection is found for which the Rossby number is 
much less than unity. 

In the regular regimes the mean temperature profiles are linear with height in the 
bulk of the fluid, the gradient being dependent mainly on rotation rate B and fluid 
depth h. These together with some dimensional arguments lead to the heat transfer 
relationship Nu K Ra3 TuP2 between Nusselt, Rayleigh and Taylor numbers. 
Experimental results by Rossby (1969) and theoretical work by Chan (1974) and 
Riahi (1977) suggested this dependence. The dependence on WT of the temperature 
power spectrum normalized by the variance was found to be universal a t  higher 
frequencies for all irregular convective motions, where 7 is the timescale of the 
thermal boundary layer for cases with a small influence of rotation and with T about 
three times larger (in numerical coefficient) for geostrophic convection. For irregular 
geostrophic regimes it is found that the temperature variance depends on rotation 
rate and heat flux, and is inversely proportional to the buoyancy parameter. 

Horizontal and vertical components of the velocity fields were measured for 
regular as well as irregular regimes, confirming, especially for geostrophic convection, 
the theoretical results by Golitsyn (1980). In  conclusion some geophysical 
applications are briefly mentioned. 

1. Introduction 
The history of convection studies in rotating fluids starting from the works by 

Chandrasekhar (1953, 1961) and Nakagawa & Frenzen (1955) is described by 
Boubnov & Golitsyn (1986, hereinafter referred to as Paper 1) .  For convection in a 
plane horizontal fluid layer with depth h rotating around the vertical axis with a 
constant angular velocity B the basic determining parameters are the non- 
dimensional numbers of Rayleigh, Taylor and Prandtl : 

Olgfh4 Ta =- 4B2h4 , P r = - ,  V 
V 2  k 

Ra -- 
f - p c p  k2v’ 

where a, k ,  v are respectively the coefficients of the thermal expansion, 
thermodiffusivity and kinematic viscosity of the fluid, c p  is its specific heat content, 
p is the density, g is the acceleration due to gravity, and f is the heat flux coming into 
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FIQURE 1. A photograph of the vortex cylinders along which the fluid is ascending in a rotating 
convecting fluid layer. 

the fluid from the heated bottom layer, or leaving the upper surface of the fluid. The 
Rayleigh flux number Ra., is related to the ordinary Rayleigh number by 

fh Rar = RuNu, NU = ~ 

pcp kAT’ 

where the Nusselt number Nu characterizes the heat transfer 
a temperature difference AT across it. 

I n  Paper 1 we also considered non-stationary processes 

(1.2) 

through the layer with 

in the initial stage of - 
convection, i.e. convective rings formed due to  spin-up of the fluid which were 
transformed into regular vortex patterns of triangular symmetry. The individual 
elements of such a vortex lattice consist of a strong vortex sink in the middle 
surrounded by a cylindrical surface on which an ascending motion was observed. 
Owing to the poor contrast of our visualization technique it is difficult to see the 
latter motions on photographs presented in 1 .  In figure 1 we now present a picture 
where the cylinders with ascending motions can be seen. The irregular regimes are 
usually formed without the ring stage. 

This paper, which is a continuation of a programme started in Paper 1, deals with 
motions that are steady in a statistical sense. It is organized in the following way. 
Sectian 2 classifies the various regimes of convection : state of rest, regular motions, 
and irregular motions which consist of geostrophical and non-geostrophical regimes. 
I n  $ 3  the temperature field measurements are described for the regular vortex grid 
and for irregular vortex regimes, the frequency spectra are presented both for cases 
of no rotation and rotation with different angular velocities, and an attempt is made 
to introduce a universal temperature spectrum for convection. Section 4 presents the 
measured velocity field for various convective regimes and $ 5  contains a summary 
and discussion of the main conclusions. 
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2. Classification of convective regimes in rotating fluids and transition 
boundaries between them 

Chandrasekhar (1953) was the first to study the onset of convection in a rotating 
plane horizontal layer of fluid for a temperature difference prescribed a t  the 
boundaries and for slip or no-slip conditions on the velocity. Similar work was done 
by Nakagawa & Frenzen (1955) who also performed the first experimental test of the 
theoretically found relationships for the onset of the motions : 

Rucr = k, Tat (2.1) 

for Tu 2 lo6, where ki is a numerical constant whose value is dependent on the type 
of boundary conditions. Recently Boubnov & Senatorsky (1988) studied a number of 
cases when the heat flux is prescribed a t  one or both boundaries with free or rigid 
upper or lower surfaces. In all cases relationships of the (2.1) type were found with 
the coefficient k, being smallest, 2.39, for the case with the fixed heat flux a t  both 
boundaries are free upper and rigid lower surface, and largest for the prescribed 
temperatures with both surfaces free, 8.72, and both surfaces rigid, 8.09. We shall 
need these values later. 

The second important transition is between the region of regular vortex motions 
studied in a detail in Paper 1 and the irregular vortex regime. It is a broad transition, 
with a factor of order two in values of Ru, and Tu when moving across the transition 
curve, or more precisely, the region whose central line could be represented as 

Raf( fo/ f )  = k, Td (2.2) 

where fo and k, are some constants - see figure 11 from Paper 1. There it was 
interpreted as a dependence of the ordinary Rayleigh number R u  = Raf/Nu K Raf/f  
on the Taylor number Tui - with the coefficient k, < 33 If: 8. In  the experiments 
which served as a base for deriving (2.2) the heat flux f was fixed at five values 
ranging from 85 to 1960 W m-2 and the fluid depth h and rotation rate !2 were 
changed. The fixing of the flux was performed by keeping the temperature of the 
water constant, from 20 "C to 60 "C where the value of the Prandtl number changed 
from about 7 to 3. At each value off, and therefore Pr, the transition points were 
aligned parallel to Tug. This suggests another possible interpretation of these results 
(which came to our minds after the publication of Paper 1). The data (20 point) can 
be treated varying with Pr as (Ru, Taf)" .  For a = -0.2493 this dependence was 
found to be linear with the correlation coefficient r = 0.953. Therefore the transition 
curve ( b )  (see figure 2 below) can be represented as 

Rafb  = C ,  T U $ P ~ - ~  (2.3) 

with C ,  = 2.62 x lo5. Both interpretations seem to be possible at present because, as 
we see later (53) isolines Nu = const on the plane (logRu,, log Tu) are parallel Tui, a t  
least for regular regimes. 

One should be cautious in applying (2.3) to a wider range of, especially, Prandtl 
numbers. For instance, for the case of fixed heat flux a t  both boundaries and an 
upper free surface, when (2.1) holds with k, = 2.39 the ratio of the right-hand sides 
of (2.1) to (2.3) is 2.39Pr4/C,, being equal to 1 a t  Pr = (2.62 x lO5/2.39)f = 18.2: i.e. 
a t  such a value of the Prandtl number both curves (2.1) and (2.3) coincide. Clearly 
relation (2.3) is not valid for Pr 2 10 and the whole transition region in the space of 
parameters Ru,, Tu and Pr should be determined more precisely. At the moment one 
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FIGURE 2. Diagram of different regimes in the plane (h,, Fa) : 1 ,  thermoconductivity regime ; 2, 
regular vortex grid ; 3, irregular geostrophic turbulence ; 4, thermal turbulence ; (a) critical curve 
for convection onset; (b) curve of transition to the irregular regime for Pr = 4.5; (c) curve with 
Ro = 1 (Pr = 4.5). Thick solid line, NF, check of stability curve in experiments by Nakagawa & 
Frenzen (1955) ; BH, point from Busse & Heikes (1980), R, region studied by Rossby (1969). Region 
with vertical hatching is studied here and in Paper 1 .  

can only say that the transition from the regular vortex regime to an irregular one 
is through the region parallel to the first transition curve (2.1). 

The region of irregular motions can be delineated by the requirement that the 
Rossby number 

where V is a characteristic fluid velocity. For Ro Q 1 we have geostrophic flow and 
for Ro 2 1 the influence of the Coriolis force is small for the flow patterns. 

Golitsyn (1980, 1981) used similarity arguments to show that in convective flows 
subject to the geostrophic constraint and for 4Nu P 1 the scale of the velocity should 
be determined by the rate of the kinetic energy dissipation B = ugf /pcp  and the 
Coriolis parameter 252. The arguments produced 

RO V/252h = 1, (2.4) 

v = C2(€/2IR)t. 12-5) 
This formula was verified in very crude measurements by Golitsyn (1981) and in 

more systematic measurements to be described here, in $4. Both works produce 
C, w 2. In  terms of our external parameters the condition (2.4) taking (2.5) into 
account can be represented as 

Raf x iPr' Tag, (2.6) 

Ra, << 2-,Pr2 Tag (2.7) 

where the coefficient i is (7,'. So the inequality 

is a condition of geostrophic convection. 
Figure 2 presents the (log Raf, log Ta)-plane with these regions : 1 is the region of 

rest with (a )  the critical curve for conditions of two rigid boundaries and a prescribed 
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temperature difference. The thick sector of curve (a )  is that part of it checked by 
Nakagawa & Frenzen, labelled NF. The part of the plane enclosed by short-dashed 
lines, R, was studied by Rossby (1969) and the lower left part of it was also studied 
by him visually. The visual flow patterns were of rolls which depended only slightly 
on the Taylor number, but for the upper right part of this region Rossby noted that 
some rolls were superimposed by vortices of the type studied by Nakagawa & 
Frenzen (1955) and described in detail in Paper 1 .  The region studied here and in 
Paper 1 experimentally is shown by vertical hatching. The segment of a straight line 
(b )  corresponds to (2.3) with Pr = 4.5 (2' = 38.5 "C) : it divides the regular regimes of 
region 2 from the irregular regimes above (2.2) - region 3. The segment of the line, 
(c), corresponds to (2.6) for the same value, Pr = 4.5. It separates the region of 
irregular geostrophic motions 3 from the region 4 where the motions are irregular but 
rotation is felt only weakly. The latter is the region containing the usual thermal 
turbulence. BH is the point where Busse & Heikes (1980) observed slightly unstable 
auto-oscillating rolls. These are major regimes of rotating convective layers for 
sufficiently large Taylor numbers. The boundaries between them need to be studied 
more precisely. 

3. The temperature field 
After the onset and development of convection in a vessel a regime develops 

corresponding to the boundary conditions. In  our experiments these are prescribed 
heat flux a t  both boundaries and a free or rigid upper surface. The regular vortex 
grid, region 2 on the regime diagram of figure 2, can be described in some individual 
detail, such as the structure of each individual vortex, mean temperature profile etc. 
For the irregular regime, along with the mean profile, one can only consider 
various statistical characteristics of the temperature fluctuations. 

All the experiments were carried out at the installation described in Paper 1 but 
with several additions and modifications. The cylindrical vessel from organic glass is 
filled with distilled water. The inner diameter of the vessel is 17 cm, the walls are 
2 cm thick and the total height is 21 em. The walls are additionally thermoinsulated 
by a foam plastic 7 cm thick. The bottom of the vessel is made of aluminium 3 ern 
thick and is heated by water from a thermostat. The whole system is placed on a 
turntable. The heat flux from the heated bottom comes through the fluid and leaves 
from its free surface due to evaporation, thermal radiation and contact with the 
colder laboratory air. This flux was determined in two ways : (i) by measured values 
of the water and air temperature and air humidity, as described in Paper 1, and (ii) 
by a thermocouple in the layer of epoxy a t  the bottom of the cylinder. Both 
determinations agreed within 5 %. The cylinder axis coincides with the turntable 
axis and is parallel to g. 

In  a series of experiments to study the temperature field within the convective 
fluid an additional thermocouple is placed into fluid. In  some cases both of its joints 
are fixed in space within the fluid and in other cases one joint is fixed and is in the 
thermostat outside the fluid and the second joint is either fixed within the fluid or can 
be moved within it. The thermocouples are made of nichrom and constantan wires 
of 50 pm in diameter, the length of the sensing part being 100 pm. Dynamical and 
thermal perturbations from such a thermocouple are negligibly small. To move one 
joint its wire is rolled up from one wheel to another through a system of blocks. The 
wheels are on axes which rotate with equal angular velocity from a common 
electromotor. The transitional velocity of the joint was always 1.71 cm/min = 

8 F1.M 219 
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2.85 cm/s. The wheels were used only to  measure the temperature profiles 
within the fluid, especially outside the lower thermal boundary layer. The lower 
wheel was placed at the bottom. To exclude its influence on the flow (though it is 
small) we put in this case into our vessel an intermediate Plexiglas bottom with a 
small hole for the wire. I n  this case the depth was measured from this new bottom. 

The signal from the thermocouples comes to  a preamplifier which is situated on the 
turntable because the direct transmission of a small signal through rotating current 
contacts leads to large distortions. The preamplified signal from the turntable goes 
to the recorder while the constant component of the current can be compensated, or 
recorded, depending on the aim of studies. The system can determine the temperature 
difference with an accuracy of 0.01 K. When the temperature-fluctuation power 
spectra are determined the fixed thermocouple is used and its amplified signal is fed 
into a computer. The frequency of the signal discretization is 32 Hz, the frequency 
pass band of the thermocouple is 0-10 Hz and the minimal resolved temperature 
difference in the coded signal is 0.01 K. The length of record analysed was usually 40 
minutes. 

3.1. The temperature in a regular vortex grid 

3.1.1. Temperature projiles 

Let us consider the main processes in the convection of a fluid with a free upper 
surface. A thermal boundary layer - cold film - is formed a t  the surface due to the 
IR sensible and latent heat fluxes. The film thickens with time, becomes unstable and 
then cold thermals are formed which descend. The problem has been studied in detail 
by Katsaros et al. (1977), Ginsburg, Golitsyn & Fedorov (1979) and many others. A 
conspicuous element of convective flow at large Rayleigh number, R a  > lo6, is a 
strongly mixed core where the temperature hardly changes with height, the main 
temperature changes being within the boundary layers. Figure 3, curve 1, presents 
a typical temperature profile in turbulent convection for 51 = 0. This profile can be 
divided into two parts : the upper one where there is the main temperature drop and 
the rest with zo = 0.2 < z/h < 0.8 where in the limits of measurement accuracy the 
temperature does not change (excluding the lower boundary layer). 

If the fluid rotates with a constant angular rate 52 the irregular thermals for the 
case a = 0 are replaced by intensive vortex sinks. I n  the regular vortex regimes the 
mean vertical temperature profiles are quite different. Some individual profiles are 
presented in figure 3, curves 2-5, for a layer 2.7 cm deep for the same flux, 
150 W m-2, showing the effect of increasing 51 from about to 1 revolution per 
second. The temperature in the upper (somewhat increasing) part of the fluid is also 
changing but less strongly than for the case 51 = 0. I n  the main volume of the fluid 
the temperature gradient T, is found to be proportional to 51. A clearly linear vertical 
temperature profile is observed for smaller heat fluxes and larger rotation rates. This 
is caused by the fact that  in this case perturbations created by the vortices are small 
owing to the rigid position of the vortices in the grid, and the temperature variations 
are small in the horizontal direction. We do not show the lower parts of curves 2, 4 
and 5 in figure 3 because of the influence of the wheels. Curve 3 in figure 3 is a profile 
measured down to the bottom and shows that the lower thermal boundary layer is 
similar to the upper one. With the increase of the heat flux and fluid depth the main 
profile acquires considerable perturbations caused by horizontal inhomogeneity in 
the layer and each individual profile is distorted by these perturbations but on 
average they are still linear with height. 

The dependence of T, on the heat flux value was found to be very weak. Similarly, 
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FIGURE 3. Vertical profiles of the mean temperature T for h = 2.7 cm, f =  150 W m-2, 
Ra,= 2.7 lo8: curve 1, D = O ;  2, 1 . 0 4 ~ ' ;  3, 2 . 0 9 ~ ' ;  4, 4.18s-'; 5, 6 . 2 8 ~ ' ;  6, regime of 
conductivity. 

the value of T, seems to be independent of the non-dimensional height zlh, which 
means that T, ot h-l. All these relationships for T, may be satisfied by the following 
dimensional combination (note that the dimension of temperature can be introduced 
only through the buoyancy parameter ag): 

where C,  is a numerical coefficient. The main dependence will be on Qh-l because 
Ra, - h4 and the weak dependence on the heat flux in our experiments was nearly 
compensated by the dependencies of the molecular coefficients on the mean 
temperature of the water. All measurements were carried out for each of the three 
heat fluxes 150,450 and 1650 W m-2, depths 2.7,5 and 10 cm, and angular velocity 
rates of 1.04, 2.09, 4.18 and 6.28 s-l. Using these data we found that C3 = 2.21 with 
the coefficient of the correlation between measured T, and calculated 17 being r = 
0.989 for 21 pairs of points. The high value of r suggests that our guess for the 
structure of 17 is about right (coefficient C, may be a weak function of Pr).  

3.1.2. The heat transfer through the layer 
The Nusselt number Nu = fh/pc, kAT, where AT is the temperature difference 

across the layer, can also be interpreted as the ratio of the 'eddy' heat transfer 
coefficient K ,  to the molecular one, k :  

The inequality here is due to the fact that AT/h 2 T, because here we disregard the 
thermal boundary layers. 

Substituting (3.1) into (3.2), after some manipulations we find that Nu = 
Cil Ra! Ta-4. Since Ra, = Ra Nu we find finally that 

Nu = C,Ra3 T u - ~ ,  C ,  < Ci4 = 4.17 x lo-'. (3.3) 

This rather complicated law for the heat transfer can be checked, a t  least partially, 
by the experiments of Rossby (1969). From (3.3) it follows that isolines Nu = const 

8-2 
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on a graph with axes (log Ra, log T a )  should be straight lines with slope g (Ra GC Tag) ; 
hence, they are parallel to the isoline N u  = 1 which is the critical curve for convection 
onset. Rossby (1969) experimentally measured the values of Nu = Nu(Ra, Ta) and 
found that with logarithmical axes (Ra, Ta) the isolines Nu = const tend to be 
parallel to the theoretical stability curve Racr a Tai. So our empirical heat transfer 
equation (3.3) agrees, a t  least qualitively, with direct experiments by Rossby (1969) 
and with the theoretical stability curves. 

From (3.3) it  follows that a t  Nu = 1, i.e. at the moment of convection onset, 
Raf = Ra = 4 T a g  z 2.88 Tat. But according to our numerical results for the 
boundary conditions of our laboratory experiments i t  should be Racr = 2.39Tag. 
Hence, the difference between the empirical constant 2.88 and the theoretical one, 
2.39, has an accuracy of better than 20 YO. The sign of the difference also agrees with 
the inequality (3.3). From (3.3) it also follows that Nu isolines should be separated 
by a distance proportional to  Nu;. Treatment of data kindly sent to us by Professor 
H. T. Rossby shows that the isolines are nearing each other and for his maximal 
value Ta,,, = 3 x lo7 the exponent 6, in the relationship 1 a Nu'1, where 1 is the 
distance between the isolines, is 6, = 0.45. However, a tendency to a further closing 
together of the lines is obvious from his data and his figure 10. We should point out 
that our experiments to obtain (3.3) were in the range 3 x lo6 < Raf < 4 x loB and 
7 x lo6 < Ta < 5 x lolo, i.e. regular or slightly irregular regimes. 

Naturally the value of T, is limited because it cannot exceed the value due to 
purely molecular conductivity in the case of no motion when the internal gradient 
equals the external one, AT/h. This limitation is shown in figure 3 by curve 6. All the 
profiles in figure 3 were measured a t  the axis of our cylinder; however, some 
experiments were carried out a t  distances 1.2 and 3.5 cm from the centre and showed 
that the profiles T ( z )  did not depend on that distance. 

It should be noted that the relationship N u a R a 3 T a P 2  was first obtained 
theoretically by Chan (1974) for two free boundaries and in the approximation 
Pr + co for the range of Taylor numbers O(Ra2) < Ta < O(Rag) which is equivalent to 
Taf 2 Ra 2 Tag. The relationship was specified by Riahi (1977) who, for these 
boundary conditions, calculated the numerical coefficient to  be equal to 0.0052. At 
Nu = 1,  i.e. on the critical curve, we have then Ra,,/TaD = 0.0052-3 = 4.52 instead of 
8.72 according to exact calculations by Chandrasekhar (1953, 1961). It thus 
apparently follows that to extrapolate (3.3) into a weakly supercritical region is not 
readily possible and the heat transfer through that region just above the critical 
curve needs to be elucidated. Perhaps the limit Pr+ co also plays a role in this 
disagreement between the numerical coefficients. 

One can develop arguments which suggest that  the relationship Nu a Ra3 TaW2, or 
a similar one, may be appropriate for the whole region 3 (figure 2) of geostrophic 
convection. For very large values of Raf ,  or Ra,  and Ta it is natural to expect 
Nu a Ram Tap" with m, n > 0. If we assume that the heat flux f does not depend on 
h and the isolines Nu = const are slightly steeper than curve (a)  of figure 2, i.e. 
proportional to Tag+&, 6 > 0 (if 6 < 0 the isolines would cluster near a ) ,  then to 
determine m and n we have a system 

3m-4n = 1, n = m(Q+S). 

The solution is m = 3( 1 - 126)-l, n = (2 + 36) (1 - 126)-'. To have both m, n > 0 we 
must have 6 < A, i.e. Nu isolines should be less steep than Taf. Note that here the 
temperature difference 

AT a ( f p n ) l / ( m + l )  
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depends much more weakly on the heat flux than in the case SZ = 0 when A T  cc f' if 
Nu cc Rag. 

We wish to stress that (3.3) implies that the heat transfer is proportional to the 
fourth power of the temperature difference. Unfortunately, we were not able to make 
direct measurements of the heat transfer in our experiments but our treatment of the 
Rossby data implies that in his experiments he has obtained the relationship 
fcc  AFn+1181 = A.Tj.22. All this opens interesting possibilities in regulating the heat 
transfer through rotating fluid layers, because from (3.3) it follows that f cc A T W 4 .  
Clearly, the heat transfer through a convecting and rotating fluid layer should be 
studied directly and for a much wider range of Ra and Ta than here, together with 
the structure of the thermal boundary layers, but our present equipment is not suited 
for this task. 

3.2. Horizontal temperature projiles 
Horizontal temperature distributions were measured in two ways which give the 
same results. Either the thermocouple was moved within the fluid as in the studies 
of the vertical structure or one joint of the thermocouple was fixed at some distance, 
R, from the centre where the second joint was. The last method uses the fact that the 
water in the cylinder rotates very slowly, retarding relative to the walls owing to the 
friction of the water surface on the air (this influence of the air was observed even for 
a height of the cylinder walls up to 50 cm above the surface ; the rate of this rotation 
is usually more than two orders of magnitude slower than the basic rotation a). To 
remove this air-water interaction a wire net was used as a shield above the cylinder, 
which did not interfere with evaporation but removed the air velocity shear a t  the 
water surface. With such a shield the vortex grid is a t  rest relative to the walls, 
otherwise there is a slow motion of the whole vortex grid relative to the cylinder 
walls. 

Figure 4 presents parts of the temperature records a t  a point with R = 1.5 cm from 
the central axis a t  different levels from z, = 0.02. The water depth here is h = 5 cm, 
and f = 450 W mP2, 52 = 6.28 s-l. The fluid depth is measured a t  51 = 0 and when 
calculating the non-dimensional vertical coordinate zo the value of h used took into 
account the parabolic meniscus forming at rotation. In this case Ra, = 1.67 x lo8, 
Ta = 2.33 x los, the distance between the almost regular vortices being d = 1.03 cm. 
The whole grid rotates with period 6 min 35 s and owing to the absence of the shield 
spatial temperature fluctuations are apparent. Near the upper evaporating surface, 
zo = 0.98, the sinking of the colder water prevails in a narrow region around the 
vortex centre. The upward motion of the warmer fluid forms a background. The 
distance between the minima of the record corresponds to the spatial distance 
between two vortices which may be crossed at a periphery, so values of minima 
should differ. Near the lower boundary zo = 0.02 the ascent of warmer fluid prevails, 
but maxima of the temperature record correspond here not to the vortex centre, but 
to the passage of the cylindrical surface surrounding vortices (see figure 1) where the 
warmer fluid ascends ; hence two temperature maxima correspond to one vortex. 

Records similar to those in figure 4 were treated statistically for various depths. 
Figure 5 presents the dependence on zo ofthe r.m.9. temperature fluctuations gT and 
the third moment yT = (T- 5?)3 uGd, non-dimensionalized by uT. The largest values 
of crT are observed in the boundary layers near the surface and the bottom, for 
0.4 < zo < 0.9 there is a small decrease of gT with depth and for 0.1 < zo < 0.3 it 
starts to increase slightly. Disregarding these small changes we can say that the main 
volume, for 0.1 < zo < 0.9, has almost constant temperature fluctuations. 

The change of sign of the third moment, non-dimensionalized by g T ,  reflects the 
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t (min) 

FIQURE 4. Parts of records of the horizontal time section of temperature taken 1.5 cm from the 
vessel centre for the regular regime (f = 450 W m-', D = 6.28 s-', h = 5 cm, Ru, = 1.6 x lo*, 
TU = 2.3 x los). The different horizontal positions are: (a) z, = z/h = 0.98, (6) z,, = 0.51, (c) z,, = 0.02. 

difference in horizontal temperature structure a t  various levels discussed in relation 
to figure 4. 

The mean temperature difference A% between the vortex core and its surroundings 
depends only weakly on the rotation rate and the total fluid depth. The main 
dependence observed is upon the heat flux f. In  one experiment a t  a distance 1 cm 
from the bottom for the fluxes 150, 450 and 1650 W m-2 the values of ATh are 0.53, 
0.88 and 1.47 K which may be approximated by the dependence cc f".", 

Summing up, our experiments reveal the following distribution of temperature in 
the regime of the convective vortex grid. The mean temperature linearly decreases 
with depth with the gradient determined by (3.1). Horizontally the temperature 
varies more or less periodically in space from the cold vortex core to the warmer 
enveloping cylinder. 

3.3. The spectrum of irregular convection in a non-rotating case 
We put this material here because it serves as a reference point for the temperature 

frequency spectra of convection with rotation and also because studies of the usual 
turbulent laboratory convection a t  IR = 0 are not numerous and we have found some 
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FIGURE 5. The dependence of the temperature variance uT, and skewness yT on zo = z/h for a 
regular convective grid. 

universal relationships not described before. As already mentioned, and is well 
known, for irregular convection the mean temperature within the fluid is constant 
with height and changes only in the boundary layers. The main characteristics of the 
temperature field in the bulk of the fluid are the statistical properties of the 
temperature fluctuations relative to this mean temperature value. Here we shall 
mainly be concerned with the temperature spectrum and its variance. 

One popular model to describe turbulent convection is that by Howard (1963) and 
its modifications. The model states that motion within the fluid is forced by the 
processes in the boundary layers. At the fluid boundary the molecular thermo- 
conductivity causes the formation of a boundary layer which grows with time 
under conditions of heat supply (or loss), becomes unstable and breaks up releasing 
thermals, then i t  is restored and the process repeats. The process is rather irregular 
but it can be characterized by the most probable value of the time period, 7. The 
value of r is determined by the following relationship (Foster 1969; Ginsburg et al. 
1979 ; Golitsyn 1979) : 

r = C,(vpc,/agf)i = C, h2k-lRa;+. (3.4) 

Foster & Waller (1985) have studied the temperature power frequency spectra 
measured 1 cm from the heated bottom within a water layer 25 cm deep. The 
maxima of these spectra correspond to a period which agrees well with (3.4) and 
C, = 12.4. The value of the same coefficient determined by a different method by 
Ginsburg et al. (1979, see also Golitsyn 1979) was found to be 12.7 

We checked (3.4) by changing the depth from 2.7 to 20cm. The spectra for 
temperature fluctuations S,(w) are presented in figure 6, where the ordinate 
measures wS, as a function of the logarithm of frequency w .  In such a representation 
the area under the curve wS,(w) for a given frequency interval (wl, w 2 )  represents the 
contribution of this interval to the total variance. The spectra here are for f = 

1.4. 
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FIGURE 6. Spectra of the temperature fluctuations wS,(w) for 52 = 0, f = 1650 W m-2 : curve 1, 
h = 2.7 cm; 2, 5 em;  3, 10 cm; 4, 20 cm. 

1650 W mP2 and different depths. Despite the last fact the spectra, within the limits 
of statistical uncertainty, are close to each other. The largest differences are for low 
frequencies where the main contribution is from large-scale flows whose scales are 
comparable with the vessel size. Note that where is the usual, not angular, frequency 
and the length of record used to calculate spectra was about 40 minutes. 

The characteristic viscous time is t = h2v-l. The non-dimensional period r0 
corresponding to the most probable frequency wo can be written as ro = w;* h 3 .  The 
value of wo is determined by finding the centre of the segment of the line which 
intersects the curve wX,(o) a t  half of the maximum level (in normal, not logarithmic 
coordinates). Figure 7 shows the dependence of ro on Ruf for three values of the heat 
flux : 150,450 and 1650 W m-*, and four depths : h = 2.7,5,  10 and 20 cm. The stars 
are data from Foster & Waller and other points are ours. The straight line 
corresponds to (3.4) with C, = 12.7. 

Foster & Waller (1985) gave in their figure 3 the temperature spectra for f from 
30.8 to 1970 W m-2 as S,(w). For four values off, each exceeding the preceding one 
fourfold, these spectra are of similar shape and are equally spaced along the abscissa 
logo. The authors were concentrating on checking equation (3.4), but their results 
hint that there could be coordinates for which all the spectra would be identical. We 
have chosen as the ordinate S,/u$r and as the abscissa 07. With such coordinates 
all the four spectra coincided when we took their smoothed values. 

In our experiments the spectra were obtained for four depths and three heat fluxes 
as described for the most probable period in figure 7. As in the case of Foster & Waller 
(1985) our thermocouple was also 1 cm above the bottom at most cases. These 
spectra in the coordinates described are presented in figure 8. The dashed line is the 
common curve for the spectra by Foster & Waller (1985) and the results by 
Kirdyashkin & Semenov (1983). For h = 2.7 cm the spectrum is shifted toward lower 
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FIGURE 7. Dependence of the most probable period of temperature fluctuations 7,, on Ra,: 
x ,j= 150 W m-2; 0,  450 W m-'; A, 1650 W m-*; *, results from Foster & Waller (1985). 

frequencies and in figure 8 i t  is given by the thin solid curve for the lowest heat flux 
150 W mP2 when Raf = 2.7 x lo6. It clearly shows that the turbulent convection for 
such a Rayleigh number is not sufficiently developed. The universal spectral 
dependence is observed starting with Rar > 3 x lo'. 

The spectra were also measured at various points within the fluid. It was found 
that their shape and the amplitude did not significantly depend on the position where 
the temperature is measured, in agreement with the approximate independence of 
the temperature variance with height (see figure 6). The spectra of convective 
temperature fluctuations have been measured by a number of authors (see Deardorff 
& Willis 1967; Fitzjarrald 1976; Zimin & Ketov 1978; Gurvich & Yurchenko 1980; 
Kirdyashkin & Semenov 1983). Their spectra at sufficiently large Rayleigh numbers 
are similar to ours, but interpretations differ. For instance, most of the spectra in the 
first two papers are for insufficiently large Rayleigh number and are the spatial 
spectra measured by moving the sensor along their chamber, but with increasing Ra 
they approach ours. Zimin & Ketov proposed two spectral intervals where S,(w) was 
proportional o-e and o-4 but the intervals were too short and subjectively chosen, 
and their spectrum was identical to ours in figure 8. Gurvich & Yurchenko (1980) 
proposed S,  - w - ~  using some dimensional arguments but a closer inspection of their 
graph shows deviations a t  the end of the line with slope - 2. Kirdyashkin & Semenov 
(1983) proposed a universal spectrum for convection near a heated vertical wall but 
the frequency normalizing factor chosen was not the external one, as here, but a 
purely internal one obtained in the data treatment process. But their spectrum is also 
identical to ours. All this speaks in favour of a hypothesis that the power frequency 
spectrum of convective turbulent fluctuations has a universal form over a broad 
range of Rayleigh numbers, independent of the means of convection generation. 
These spectra do not obviously have any power ranges, however we cannot exclude 
that such intervals could appear a t  much larger sizes of vessels, i.e. a t  much larger 
values of the Rayleigh number. 
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FIGURE 8. The universal convective temperature time spectrum for SZ = 0 in coordinates S,T-~U;',  
w r . F o r h = 5 . 0 c m :  . , f = 1 5 0 W m - 2 ;  &450Wm-';  +, 1 6 5 0 W m - 2 ; f o r h = 1 0 c m :  o,f= 
150 W m-2; 0, 450 W m-2; I ,  1650 W m-2; for h = 20 cm: *, f =  150 W m-'; A, 450 W m-'; H, 
1650 W m-' ; -, h = 2.7 cm,f = 150 W m-' ; ---, results by Foster & Waller (1985) ; Kirdyashkin 
& Semenov (1983) spectrum is indistinguished at this scale from the latter one. 

Irregular convection in a plane fluid layer is characterized by the fact that all its 
statistical parameters can be expressed in terms of external parameters not only in 
case SZ = 0 (Deardorff 1970; Fitzjarrald 1976) but also for the geostrophic case (see 
$3.4 below). The temperature variance in these cases, outside the boundary layers, 
is almost independent of the vertical coordinate z, differing from the case of free 
convection above a plane where (Prandtl 1932 ; Oboukhov 1960) 

UT = c;( f / p c p ) f  (a&. 

For a plane layer it is natural to take instead of z its height h, multiplying uT by 
fl(z/h). The function fl differs from unity only a t  the boundary layers. According to 
Deardorff & Willis (1967, figures 6-8) and to our figure 9 the function fi increases by 
some 30-70 % withi:; che boundary layers depending on the value of Ra.  Therefore 
the variance can be scaled as 

UT = C,(f/pc,)f (agh)-i. (3.5) 
This formula can be transformed into a non-dimensional form (Fitzjarrald 1976) : 

uT/AT = C, N u  (Nu R a  Pr)-i. (3.6) 

According to him, for air C, = 0.98k0.05, but Deardorff (1970) gives C, = 
1.9kO.l. Our nine points ( h = 5 ,  10 and 20cm, f = 150, 450 and 1650Wm-2) 
measured 1 cm from the bottom (at two points separated by 3 cm) produce C, = 2.4 
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FIGURE 9. Dependence on zo = z/h of the temperature variance uT and skewness yT, 
for Rur = 4.1 x lo", i2 = 0. 

with a correlation coefficient r = 0.980. The general structure of (3.5) seems to be well 
confirmed. The difference in the values of the numerical coefficient can be related to 
the different heights of measurements: we took ours near the upper surface of the 
lower boundary layer, whereas Deardorff & Willis (1967) measured in the middle of 
the air layer as did Fitzjarrald (1976). The last author discussed the difference 
between his results and those by Deardorff & Willis but could not explain it. If we 
reduce our value of C, by a factor 1.5 k 0 . 2  (which is the ratio between value of uT 
measured a t  one point and uT for the difference of the signals measured a t  two points 
within the fluid) we obtain C, = 1.6k0.5.  Clearly further work is needed to 
determine this coefficient more precisely. 

Figure 9 presents the dependence on z,, of the second and the third moments of the 
temperature fluctuations for h = 20 cm and f = 450 W mP2. The non-dimensional 
third moment yT characterizes here a ratio between the intensities of the rising 
warmer water and the sinking colder water. Near the bottom the rising warmer 
thermals are formed and yT > 0. Near the surface yT < 0 and in absolute value it is 
much larger than that below, which reflects the fact that the colder thermals formed 
from the cold film at the upper surface are more intense than the warmer thermals 
formed a t  the lower heated boundary. Note some similarities between figures 5 and 
9, i.e. the behaviour with height of the temperature variance does not significantly 
depend on whether the system is at rest or rotating. 

3.4. The inJluence of rotation on the statistical characteristics of turbulent convection 
The temperature fluctuations, as in $3.2, were measured by two thermocouples. The 
first thermocouple (used for measuring all the spectra) had one joint within the fluid 
0.9 cm above the bottom on the axis of the cylinder and the other joint in the 
thermostated water outside the vessel. The first joint of the second thermocouple was 
placed a t  the cylinder axis 1 cm above the bottom and its second joint was a t  the 
same height but 3 cm off the axis. The second thermocouple (used for qualitative 
analysis of the spatial temperature structure) owing to the fluid rotation when there 
is air shear allowed measurement of a horizontal circular section of the fluid with 
diameter of 6 cm. The thermocouples could also be moved vertically, and the mean 
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FIGURE 10. Records of the temperature fluctuations for different 0, a t f =  150 W m?, h = 10 em, 
Ra, = 5.1 x los: (a )  $2 = 0;  ( b )  0.52 s-l; (c) 1.05 s-l; (d) 2.09 s-'; ( e )  4.19 s-'; ( f )  6.28 s-'. 

vertical temperature profiles for turbulent convection with rotation were similar to 
those a t  rest (see curve 1 of figure 3), i.e. constant temperature within the bulk of the 
fluid with sharp changes in the boundary layers. 

Figure 10 shows temperature records from the two thermocouples for different 
rotation rates Q. On an increase of the Taylor number Ta a transition is evident to 
more regular low-frequency temperature changes. However, there is no approach to 
a stationary pattern, which possibly is related to the vortex grid oscillations relative 
to  its state of rest. In  regular grids the distance between the vortices is of order 
0.5 cm and the grid oscillations, even with a small amplitude, could be recorded as 
noticeable temperature changes at a fixed point. A decrease in the characteristic 
period in the record of the thermocouple 2 (right part of figure 10) corresponds to the 
increase of the rotation rate SZ and subsequent decrease of the distance between the 
vortices (as Q-t in irregular regimes and S2-t in the regular ones, see Paper 1). 

The records, 40 minutes long for cases when there were no swirls of the fluid, were 
treated and their power spectra were obtained. As Ta increases, the spectra narrow 
and shift to lower frequencies and their maxima increase. The position of the spectral 
maximum depends on the position of the regime in question on the (Raf, Ta)-diagram 
relative to  the critical curve of convection onset. 

When considering normalized spectra .-;' S,(o) one should recall the regime 
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FIGURE 11. Spectra S,cr;?~-~ for different 0. Curve 1 , Q  = 0 (figure 8) ; curve 2, mean spectrum for 
geostrophic turbulence averaged over 26 individual spectra, all of which are within the dashed 
limits shown. 

diagram of figure 2 and the geostrophical condition (2.6). If we are a t  the transitional 
region Ro N 1 on the plane (Ra f ,  T a ) ,  then as the rotation increases there is a gradual 
shift of the spectrum toward the left without changing its shape. If Ro < 0.1 then 
again with no change of shape the spectrum shifts toward the new ' stationary ' form 
curve 2 of figure 11. Twenty-six spectra are presented in an averaged form from 
region 3 of figure 2 satisfying condition Ro < 1. Spectrum 2 of figure 11 can be 
transferred into spectrum 1 of the same figure or into the universal spectrum of 
convection a t  52 = 0 if we replace T by r1 = C, r where C, = 3.0 & 0.4. For the case 
52 = 0 the value of T x 12.4hZv-l Ra;; was a basic period of instability of the thermal 
boundary layers. Our last result shows that in the region of geostrophic irregular 
convection this basic timescale remains qualitatively the same, only the numerical 
constant is about half an order of magnitude larger. It is also interesting to note that 
the shape of the geostrophic irregular convection universal spectrum uGz ST(wrl )  does 
not explicitly depend on the rotation rate a, apart from the value of the temperature 
variance u:. 

The value of a$ can be estimated theoretically from several lines of arguments. 
First, from dimensional arguments : disregarding molecular coefficients and the fluid 
depth for irregular motions we are left with the kinematic heat fluxf' = f/pcp, 52 and 
the buoyancy parameter ag. From these we have 

u; = C,sZf'/ag. (3.7) 

The same result can be obtained from the thermal wind equation in the convecting 
layer taking into account the velocity scale (2.5). The third line comes from the 
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FIGURE 12. Spectra S ,  n;* in seconds for small flux f = 150 W m-2. For h = 2.7 cm : -, 52 = 0 ;  
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A, 52 = 2.09 s-'; @, 6.28 s-'. For h = 10 cm; ., 52 = 6.28 s-l. 

expression f' K uTuu, where uu is the r.m.s. of velocity fluctuations whose 
dependence on the external parameters is given by (2.5). The formula (3.7) was 
checked by the 26 available values of crk measured in region 3, irregular geostrophic 
convection. The correlation coefficient between the experimental value of u$ and 
G?f'/ag was r = 0.984 and the regression coefficient C,  = 0.42. 

In  the region of almost regular quasi-steady structures the spectrum S,(w) u;2 has 
a different form, as presented in figure 12. It has a very well-pronounced range over 
two decades where S,(w) cc wP2. This behaviour could be explained by simple 
dimensional arguments supposing that the temperature power frequency spectrum 
S,(w) with dimension 0 2 T  is determined only by the rate of temperature 
inhomogeneity dissipation N (dimension 02T-'), as for the temperature turbulent 
spectrum (Oboukhov 1949; Corrsin 1951), and by the frequency w .  Then we a t  once 
obtain S,(w) = a,Nw-* where a, is a constant. We must confess that any degree of 
rigour in this kind of argument would require a very substantial study which should 
answer, along with many others, such questions as why such a spectrum is observed 
only for almost regular vortex regimes, why there is no trace of rotation in that 
simple form, etc. However, we have mentioned it here only because it seems to be of 
considerable significance. 

4. The velocity field 
For studying the velocity field two mutually complementary methods were used. 

The first was used to study vertical velocities in the regime of a regular convective 
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grid and consists in measuring the velocity of dye propagation. In this regime the 
colder fluid from the upper surface layer descends within a narrow vortex which 
serves as the axis for a cylinder on which the warmer fluid ascends. The latter motion 
is seen in figure 1. The dye is bromthymole blue and it is placed at  the fluid surface 
(other examples of motion patterns visualized in this way can be found in Paper 1 ) .  
Maximal vertical velocities are observed in the vortices wherein the fluid comes only 
from the cold surface film. To measure these vertical velocities, horizontal lines 1 cm 
apart were drawn on the sidewalls and the time for dye to pass between the lines was 
measured. For a fluid 20cm deep up to 18 such measurements can be made 
(boundary layers should be excluded). The dye is introduced to the surface about 20 
minutes after the start of rotation in order to show a stationary pattern. For each set 
of external parameters five measurements were performed and their mean was taken. 

The second method is also traditional. It uses small (about 20 pm) particles of 
aluminium powder filling the fluid which is illuminated by a narrow plane beam of 
light 2 mm wide. The tracks of particles are photographed with time exposure from 
0.5 to 10 s. The same regime was photographed with several exposures to exclude 
particles leaving the beam during the exposure. Only those tracks were used whose 
length was directly proportional to  the exposure time. The velocity is determined 
from the track length and exposure. This method gives good results for irregular 
regimes but identifies intense narrow flows badly. 

4.1. The regular vortex grid 
The velocity measurements were carried out for depths h = 5, 10 and 20 cm, heat 
fluxes f = 150, 450 and 1650 W mP2 and rotation rates D = 3.14, 4.19, 5.24 and 
6.28 s-l (periods 2, 1.5, 1.2 and 1 s) and those cases where the regular grid was 
observed are considered here. The lower limit in depth is caused by difficulties in clear 
dye front determination at small depths, and the lower limit in D by the absence of 
a regular vortex grid for SZ < 3.14 s-l. The motion outside the boundary layers is 
considered because there the dye propagation is irregular (the front starts to form a t  
the top and breaks up near the bottom). 

Inside the vortex one can determine the vertical velocity w. The main 
characteristics of the value of w are as follows: it does not depend on the vertical 
coordinate z ,  i.e. it  is constant within the fluid, and only very weakly depends on SZ, 
decreasing with 52; it decreases with the approach to the critical curve of a regime, 
the main determining factors being the heat flux and the depth h, i.e. the Rayleigh flux 
number. For non-rotating turbulent convection Malkus (1954), Deardorff & Willis 
(1967) and Golitsyn (1979) obtained theoretically and confirmed experimentally the 
following dependence of the vertical Reynolds number on the external parameters : 

Re, = whv-* = A Pr-iRa$, (4.1) 

where A = 0.73 according to the measurements. We have taken 167 vertical velocity 
measurements in the cores which agree satisfactorily with the formula (the 
correlation coefficient r = 0.962) with A = 0.80. We find that the vertical mean 
velocity of turbulent convection in the non-rotating fluid and maximal vertical 
velocity in the vortex cores in the rotating fluid in a regular convective regime can 
be described in a similar manner but with slightly different numerical coefficients. 
We did not have enough data to determine the aforementioned weak dependence of 
w on 52. 

The value of the vertical velocity is in a good accord with the lifetime of the 
convective rings measured in Paper 1 (see equation (3.2) there). 
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FIGURE 13. Horizontal structure of convective motions for different i2 a t  2 cm from upper surface, 
h = 10 cm, f = 150 W m-', Ra, = 5.1 x 10'. (a) i2 = 0,  ( b )  0.52 s-l, ( c )  3.14 s-l, (d )  4.19 s-l. 

Now we consider the horizontal velocity field in a regular vortex grid. Outside the 
boundary layers noticeable horizontal motions are observed only in the regions of 
cylinders along which the warmer fluid ascends and there is practically no horizontal 
motion in the vortex cores and between the cylinders (see figure 13 where vortices are 
somewhat irregular and interacting). Maximal horizontal velocities are observed a t  
the cylinders of ascent and fluid particles can a t  any moment be transferred from one 
cylinder to a neighbouring one, which brings an element of randomness to the 
otherwise very regular structure of the vortex grid. This information was obtained 
by the illuminating beam technique. The same behaviour is observed by the dye 
visualization if the dye is injected within the fluid. In  this case the dye moves not 
only vertically, but also horizontally between the cylinders and the horizontal 
velocities are comparable with the vertical ones. The radial distribution of the 
horizontal azimuthal velocity centred around a regular vortex is shown in figure 14 
and the vertical distribution of the maximal horizontal velocity in figure 15. These 
two figures show that the horizontal velocity has a maximum a t  the cylinder, is close 
to zero a t  the vortex core and decreases sharply a t  the outer edge of the cylinder ; the 
maximal velocity is near the free surface and within the main volume of fluid i t  
slowly decreases with height, the decrease being close to linear. 

4.2. Velocities i n  the irregular vortex regimes 

An irregular vortex regime consists of vortices of different sizes with developed 
vertical jet flows a t  the centre of the vortex and its boundaries, the vortices moving 
chaotically in space and time. To determine mean horizontal velocities u the 
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FIGURE 14. Dependence of the horizontal velocity V on the distance from the vortex centre r :  

h = 10 cm, f =  450 W mW2, SZ = 4.19 s-l, Ru, = 2.6 x 10'. 

FIGURE 15. Dependence of the maximum horizontal azimuthal velocity V,,, on z o :  h = 20 cm, 
f=450Wm-2,SZ=4.18s~1,Ru,=4.2x1010,  T u = 2 . 7 ~ 1 0 ~ ~ .  

velocities were measured at 10 points a t  one level (2 cm from the surface), 
separated by 4 mm from each other, and the r.m.s. value was calculated and then the 
horizontal Reynolds number Re, = uhv-l. 

We consider first mean horizontal velocities $Z in irregular regimes. For points in 
region 4 of figure 2 where the Rossby number Ro 2 1 the value of a, within tht: 
accuracy of measurements, does not depend on the rotation rate SZ. But for region 
3, geostrophic turbulent convection, we have checked the dependence (2 -5 )  which for 
the Reynolds number Re = vhv-' can be written as 

Re, = C, Pr-l Ra$ Ta-a. (4.2) 

Measurements of u by the streak photography technique were performed for 
h 2 10 cm and 15 different values ofRaf and Ta. The correlation coefficient is r = 0.985 
between pairs of Re, measured and calculated by (4.2). The regression coefficient 
C,  = 1.7 which can be compared with results of a very rough experimental 
determination of a similar coefficient for mean vertical velocities which gave 2.3 f 0.4 
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FIGURE 16. Vertical structure of convective motions for h = 10 cm, f = 450 W m-2, Ru, = 2.6 x log 
and different values of 52: ( a )  52 = 0, ( 6 )  0.52 s-l; (c) 2.09 5- l ;  ( d )  4.19 s-'. A t  the upper parts of the 
photographs one can see the reflections from the fluid upper surface. 

(Golitsyn 1981). Similar measurements were recently made by Fernando, Boyer & 
Chen (1989). They also confirmed (4.3) with C, = 1.6. 

The visualization by the aluminium powder allows one t,o clearly see the character 
of motions within the system. Figure 13 shows the evolution of the motion patterns 
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with a sequential increase of the rotation rate 52. From global motions comparable 
with the vessel size at Q = 0 the system acquires the structure of local vortices as 
described in Paper 1. I n  turbulent regimes the vortices are large and the motion 
between them is seen clearly. At higher rotation rates the vortices get smaller and 
more localized, stagnation points are seen and the motion of particles between the 
cylinders is much weaker. 

Figure 16 presents streak photographs of vertical cross-sections by the light beam 
of our vessel with increasing rotation Q. At 52 = 0 we see a flow comparable in size 
with the vessel. The structure becomes more localized with the increase of 52. At 
small Q the orientation of the vortex axes is rather arbitrary in space; a t  larger B 
the vortices tend to align along the rotation axes and a t  sufficiently large 52 all 
vortices are of the same sign and direction as 8. 

5. Discussion and conclusions 
The study reported has shown the richness of phenomena observed in fairly simple, 

a t  least at first sight, experiments. Most researchers have concentrated on the initial 
stages of convection development which is easier from theoretical point of view and 
without which it would be difficult to understand many effects. But the regimes of 
developed convection with rotation remained virtually unexamined. At moderately 
large supercritical Rayleigh numbers but not large Taylor numbers the rotation 
influences the convection structure little and the fluid motion ‘remembers’ its 
structure a t  Q = 0. Also, the processes in the boundary layers are of much 
significance and a t  smaller Taylor numbers the motion in these layers determines 
fully the fluid layer motions. 

For developed convection the fluid outside the boundary layers has a practically 
homogeneous (with respect to certain statistical properties) region. In the regular 
regime the convection is characterized by the following features. 

(i) The ascent of the fluid occurs on cylinders while its sinking is confined to an 
intense jet (vortex core) a t  the cylinder axis. Inside the cylinder the fluid particles 
move along fixed trajectories which a t  the cylinder surface or between the cylinders 
the motion is rather irregular and a fluid particle can a t  any moment leave the 
surface or go from one surface to another neighbouring one. After Chandrasekhar 
(1961) and Veronis (1959) there is a notion that the motion in a convective rotating 
layer is on conical surfaces with a change of the rotation sign in a vortex when a fluid 
particle moves down from the surface to  the bottom. I n  our experiments we 
sometimes observed cone-like shapes only a t  the beginning of the regime development 
in the parameter space close to the critical curve, but with time the cones 
transformed into cylinders and their rotation sign was always that of the basic 
rotation of the system. Evidently the cones are unstable configurations. In this 
respect the work by Goncharov & Gryanik (1986) may have some relevance. They 
considered the grid of Sallivan vortices with flow patterns close to what we observed 
and they proved that such a rotating vortex grid is stable. 

(ii) The fact that a fluid particle can spontaneously go from one cylindrical surface 
to another one does not allow us to say that the regular regimes (in our terminology) 
are regular in any rigorous sense. On the one hand, we have a stable vortex structure 
with fixed vortices forming a regular grid. On the other hand, we have full 
indeterminacy of individual fluid particle trajectories on cylinder surfaces. 

(iii) The temperature gradient within the main part of a layer with a regular 
vortex grid is constant, i.e. the temperature profiles are linear with height. The 
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gradient values are functions of Q, fluid depth and Rayleigh flux number, which 
results in a heat transfer relationship Nu cc Ra3 Ta-2. This relationship leads to the 
independence of the heat flux through the layer of its height and may be confirmed 
by some indirect experimentally based arguments. It was also suggested by some 
earlier theoretical work. 

Irregular vortex regimes, in their turn, can be divided into two regimes, 
geostrophic convection and thermal convection. 

(iv) In  both of these regions the temperature in the main body of fluid outside the 
boundary layers does not change with height. There is a universal temperature power 
spectrum in non-dimensional coordinates that is similar for both regions, except that 
the timescale in the region of geostrophic convection is about three times larger than 
for the usual thermal convection. The intensity of the spectra in the geostrophic 
region is directly proportional to  the rotation rate 52 and the heat flux. 

(v) New experiments confirm much cruder older ones in establishing the velocity 
scale for geostrophic convection ti z 2(s/2Q)i derived previously by dimensional 
arguments, with E being the kinetic energy dissipation and 2 0  the Coriolis parameter. 

Though arguments may be developed that for geostrophic convection the heat 
transfer can obey the same relationship Nu oc Ra3 TaP2, or a similar one, for very 
large values of the Rayleigh and Taylor numbers this problem awaits systematic 
experimental studies. 

It can be shown that geophysical applications of geostrophic convection are 
motions within the Earth's liquid core, deep convection in the ocean (Golitsyn 1980, 
1981) and in basaltic magma chambers (Griffiths 1987). For the first case, assuming 
a geothermal heat flux of the same order as on the surface (or less), we can obtain ti 
of the order of few kilometres per year which corresponds to the drift rate of certain 
geomagnetic field components. For the latter case withf = 1-10 W mP2 the velocity 
scale would be of order of 1 or few mm/s, i.e. 30 or more km/year. A detailed 
discussion of geophysical applications will be presented elsewhere. 
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R E F E R E N C E S  

BOUBNOV, B. M. 1987 Thermal structure of vortex convective grid. Izv. Akad.  Nauk. SSSR Mech. 
Zhid. i Gaza 6, 160-166. 

BOUBNOV, B. M. & GOLITSYN, G. S. 1986 Experimental study of convective structures in rotating 
fluids. J .  Fluid Mech. 167, 503-531 (referred to as Paper 1). 

BOUBNOV, B. M. & SENATORSKY, A. 0. 1988 Influence of boundary conditions on convective 
stability of horizontal rotating fluid layer. Izv. Akad. Nauk. SSSR Mech. Zhid. i Gaza 3 ,  
124-129. 

BUSSE, F. H. & HIKES, K. E. 1980 Convection a rotating layer: A simple case of turbulence. 
Science 208, 173-174. 

CHAN, S. K. 1974 Investigation of turbulent convection under a rotation constraint. J. Fluid 
Mech. 64, 477-506. 

CHANDRASEKHAR, S. 1953 The instability of a layer of fluid heated below and subject to Coriolis 
forces. Proc. R. SOC. Lond. A217, 306-327. 

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromugnetic Stability. Clarendon. 
CORRSIN, S. 1951 On the spectrum of temperature fluctuations in an isotropic turbulence. 

J .  Aeronaut. Sci. 22, 4 6 M 7 3 .  



Convective motions in a rotating plane layer 239 

DEARDORFF, J .  W. 1970 Convective velocities and temperature scales for the unstable boundary 

DEARDORFF, J. W. & WILLIS, G. E. 1967 Investigation of turbulent thermal convection between 

FERNANDO, H. J. S., BOYER, D. L. & CHEN, R. 1989 Turbulent thermal convection in rotating 

FITZJARRALD, D. E. 1976 An experimental study of turbulent convection in air. J .  FluidMech. 73, 

FOSTER, T. D. 1969 The effect of initial conditions and lateral boundaries on convection. J .  Fluid 

FOSTER, T. D. & WALLER, S. 1985 Experiments on convection a t  very high Rayleigh numbers. 

GINSBURG, A. J., GOLITSYN, G. S. & FEDOROV, K. N. 1979 Measurements of time scale of 

GOLITSYN, G. S. 1979 Simple theoretical and experimental study of convection with some 

GOLITSYN, G. S. 1980 Geostrophic convection. Dokl. Acad. Nauk SSSR 251, 135&1360. 
GOLITSYN, G. S. 1981 Structure of convection at  fast rotation. Bokl. Acad. Nauk SSSR 261, 

GONCHAROV, V. P. & GRYANIK, V. M. 1986 Dynamics of solitary dissipative vortices: vortex 

GRIFFITKS, R. M. 1987 Effects of Earth’s rotation on convection in magma chambers. Earth and 

GURVICH, A. S. & YURCHENKO, B. N. 1980 Frequency spectra of the temperature fluctuations in 

HOWARD, L. N. 1963 Heat transport by turbulent convection. J .  Fluid Mech. 17, 40.5432. 
KATSAROS, K. B., LIU, W. T., BUSINOER, J. E. & TILLMAN, J. E. 1977 Heat transport and thermal 

structure in the interfacial boundary layer measured in an open tank of water in turbulent free 
convection. J .  Fluid Mech. 83, 311-335. 

KIRDYASHKIN, A. G .  & SEMENOV, V. J. 1983 Temperature fluctuation spectra in vertical layer in 
thermal gravitational convection. Thermophys. High Temperature 21, 731-739. 

MALKUS, V. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R .  SOC. 
Lond. A 225, 196-212. 

NAKAGAWA, Y. & FRENZEN, P. 1955 A theoretical and experimental study of cellular convection 
in rotating fluids. Tellus 7, 1-21. 

OBOUKHOV, A. M. 1949 The structure of temperature field in turbulent flow. Izv. Akad. Nauk. 
SSSR Geogr. Geophys. 13, 58-69 (in Russian). 

OBOUKHOV, A. M. 1960 On structure of temperature field and field of velocities in condition of free 
convection. Zzv. Akad. Nauk. SSSR Geophys. 9, 1392-1396 (in Russian). 

PRANDTL, L. 1932 Meteorologische Anwendungen der Stromungslchere. Beitr. 2. Phys. Atmos. 19, 
188-202. 

RIAHI, N. 1977 Upper-bound problem for a rotating system. J .  Fluid Mech. 81, 523-526. 
ROSSBY, H. T. 1969 A study of B6nard convection with and without rotation. J .  Fluid Mech. 36. 

VERONIS, G. 1959 Cellular convection with finite amplitude in rotating fluid. J .  Fluid Il1ec.h. 24. 

ZIMIN, V. D. & KETOV, A. I. 1978 Turbulent convection in a cubic cavity heated from below. Izv. 

layer and for Rayleigh convection. J .  Atrnos. Sci. 27, 1211-1213. 

horizontal plates. J .  Fluid Mech. 28, 675-705. 

fluid. Euromech 245, Cambridge, April 1989. 

693-721. 

Mech. 37, 81-95. 

Phys. Fluids 28, 455-461. 

convection in fluid during cooling from the surface. Izv. Atmos. Oceanic Phys. 15, 333-335. 

geophysical applications and analogies. J .  Fluid Mech. 95, 567-608. 

2 17-320. 

lattices and their stability. Sou. Phys. J .  Exp. Theor. Phys. 64, 97G-983. 

Planet. Sci. Lett. 85, 525-536. 

the turbulent convection. Izv. Atmos. Oceanic Phys. 16, 854457.  

309-337. 

545-554. 

Akad. Nauk. SSSR Mech. Zhid. i Gaza 4, 133-138. 


